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Abstract—Recent years have witnessed rapid progress in em-
ploying graph convolutional networks (GCNs) for various video
analysis tasks where graph-based data abound. However, explor-
ing the transferable knowledge between different graphs, which is
a direction with wide and potential applications, has been rarely
studied. To address this issue, we propose a graph interaction net-
works (GINs) model for transferring relation knowledge across
two graphs. Different from conventional domain adaptation or
knowledge distillation approaches, our GINs focus on a “self-
learned” weight matrix, which is a higher-level representation of
the input data. And each element of the weight matrix represents
the pair-wise relation among different nodes within the graph.
Moreover, we guide the networks to transfer the knowledge across
the weight matrices by designing a task-specific loss function, so
that the relation information is well preserved during transfer.
We conduct experiments on two different scenarios for video
analysis, including a new proposed setting for unsupervised
skeleton-based action recognition across different datasets, and
supervised group activity recognition with multi-modal inputs.
Extensive experiments on six widely used datasets illustrate that
our GINs achieve very competitive performance in comparison
with the state-of-the-arts.

Index Terms—Graph convolutional network, skeleton-based
action recognition, group activity recognition, transfer learning.

I. INTRODUCTION

There are substantial graph-based data existing in various
video analysis tasks. For example, skeleton-based sequence
for action recognition (Fig. 1(b)), sport video with multiple
people for group activity recognition (Fig. 1(c)) and many
others [1]–[9]. During the past decades, great efforts have been
devoted to modelling the dependency of different nodes in
graphs (e.g. probabilistic graphical models [10], [11]). More
recently, inspired by the success of deep convolutional neural
networks (DCNNs) on grid-based data, a series of works have
been proposed to employ convolution operators on the graph-
based topology with deep hierarchical architectures [12]–[14].
With this developed graph convolutional network (GCN), rapid
progress has been achieved on a variety of tasks like action
recognition [15], [16], scene graph generation [17], social
relationship understanding [2], etc.

Based on the rich graph-based data and the success of GCN
on a single graphical model, we move a step towards the inter-
action of two graphs, which is a new direction that has been
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rarely explored. More intuitively, suppose we are given two
graphs within some correlated structure, e.g. unpaired graphs
sampled from different distributions or paired graphs from dif-
ferent modalities, can we transfer the relation1 between them?
This question is important as it extends more applications for
graphical models, such as (1) unpaired relation transfer across
different datasets in Fig. 1(b), and (2) paired relation transfer
across different modalities in Fig. 1(c)2. To address this issue,
a straightforward way is to adopt the existing approaches on
domain adaptation [20]–[23] or knowledge distillation [24],
[25]. However, these methods are designed for grid-based
data, and only transfer knowledge at the intermediate feature
level or the softmax score level, which may lose the relation
information in graph-based data after transferring.

To tackle this, we propose a graph interaction networks
(GINs) architecture for transferring relation knowledge be-
tween different graphs in this paper. Specifically, we first
generate a “self-learned” weight matrix for each graph, which
is sent into graph convolutional layer with the node features.
And output features of this layer can be utilized for the
original task. During the optimization period, we enforce the
two weight matrices, which contain the relation information
of the corresponding graphs, to be close with each other.
In this way, we can leverage the relation knowledge in a
graph with more advantages (e.g., with supervisory signals or
higher-quality data) to guide the learning process of another
graph and achieve better performance. In order to demonstrate
the effectiveness of our method, we conducted experiments
on a new proposed unsupervised setting for skeleton-based
action recognition and the conventional supervised setting
for group activity recognition. Experimental results on four
datasets for skeleton-based action recognition and two datasets
for group activity recognition have shown the advantages of
our proposed method compared with the state-of-the-arts.

Our main contributions are summarized as below:

1) In contrast to conventional works on graph convolutional
network which focus on a single graph, we investigate
the problem of knowledge transfer across different graph-
based data. This is a rarely studied direction with wide
and potential applications.

2) Unlike most existing knowledge transfer methods which
process the intermediate vanilla features, our GINs trans-
fer knowledge between the weight matrices of the corre-
sponding graphs, through which the relation information

1In this paper, “relation” refers to the pairwise property between any two
nodes of a graph.

2We provide detailed descriptions of these tasks in the caption of Fig. 1.
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(a) Relation transfer between different graphs (c) Paired relation transfer across different modalities    
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Fig. 1. (a) Illustration of our basic idea to transfer the relation knowledge across graphs. Here, relation refers to the pairwise property between any
two nodes of a graph [18], [19]. To be specific, in the two presented graphs Gk(k = 1, 2), the element Ak,ij in weight matrix Ak represents the relation
between the i-th and j-th nodes in Gk . Since there would be many different relations in a graph, for brevity, we only use the orange links, black links and
disconnection to denote strong relation, ordinary relation and weak relation. In order to transfer the relation knowledge from G1 to G2, we enforce the two
weight matrices A1, A2 to be close with each other during training. (b) Unpaired relation transfer across different datasets. In the figure, the graph nodes
denote different joints and the links represent the bones of the body. Suppose we have unpaired skeleton-based action samples from two different datasets,
where action labels are available on one dataset (source) but unavailable on the other dataset (target), the goal is to transfer the relation knowledge learned
in the source dataset to the target dataset for skeleton-based action recognition. (c) Paired relation transfer across different modalities. In the figure, the
graph nodes denote different people and the links represent strong relations. Given paired samples corresponding to the same video on different modalities,
e.g., a set of individual action labels (semantics modality) and tracklets of different people (appearance modality), we aim to transfer the relation knowledge
from the semantic modality to the appearance modality for group activity recognition.

can be well preserved.
3) Different from conventional fully supervised settings, we

explore a new unsupervised domain adaptation setting
for skeleton-based action recognition. It is more close
to real-world applications, and experimental results have
revealed the great challenge of this new setting.

4) We have conducted extensive experiments on four
datasets for skeleton-based action recognition and two
datasets for group activity recognition. The comparison
with the state-of-the-arts and ablation study have shown
the effectiveness of our proposed method.

II. RELATED WORK

A. Graph Convolutional Network

Motivated by the success of deep convolutional neural
network on grid-based data, various approaches have been
proposed to employ data-driven methods on graph-based struc-
tures [12]–[14], [26], [27]. Given a set of node features of a
graph, which lies in the non-Euclidean space, these works aim
to perform convolution operations to capture the local infor-
mation of the neighboring nodes by a new architecture called
Graph Convolutional Network (GCN). Recently, GCNs have
also been applied into various tasks for computer vision [3],
[4], [28]. For example, Yang et al. [17] proposed a graph R-
CNN model to capture contextual information between objects
and relations for scene graph generation. Wang et al. [2]
developed a Graph Reasoning Model (GRM) to explore the
persons-object interaction for social relationship understand-
ing. There are also several approaches similar to our work in

adopting GCN for human action recognition, where the graph
model was built based on skeleton-based sequences [16] or
RGB videos [15] respectively. Different from these works, we
attempt to transfer the relation knowledge between two GCNs
in different datasets or with multi-modal inputs.

B. Skeleton-based Action Recognition

Thanks to the rapid development of 3D sensors and algo-
rithms for pose estimation, skeleton-based action recognition
has attracted more and more attention in the research field
recently [29]–[31]. For a survey we refer to [32]–[34]. Here we
review several works relevant to this paper, which utilized the
technique of graph convolutional network. Since the human
body in skeleton-based data lies in a graph-based structure,
where the hinged joints and rigid bones can be modeled as the
nodes and edges, Tang et al. [35] employed GCN to reason the
dependency of different joints in spatial domain. Yan et al. [16]
considered a skeleton-based sequence as a spatial-temporal
graph, and designed an ST-GCN architecture to perform action
recognition. More recently, a variety of works have been
proposed to improve the process graph construction [36]–
[39]. Unlike these works which follow the fully-supervised
learning paradigm, we explore a new unsupervised domain
adaptation setting and investigate whether the knowledge
between different skeleton-based videos can be transferred.

C. Domain Adaptation

Domain adaptation, which aims to transfer the knowledge
from the source domain to the target domain, has wide appli-
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cations in computer vision [40]–[42]. The main challenge for
domain adaptation is to reduce the shift between the data from
different distributions. To address this, early shallow methods
focused on exploring domain-invariant representations based
on hand-crafted features [43]–[45], while recent works lever-
aged the power of deep neural networks to learn more transfer-
able representations. As for the deep models, one direction is
to include adaptation layers in DNN to close the distributions
of the intermediate feature across different domains [21]. An-
other direction [20]–[23], [46], which is inspired by Generative
Adversarial Networks (GANs), contains two subnetworks as
domain discriminator and feature extractor. The domain dis-
criminator aims to distinguish features from different domains,
while the feature extractor aims to confuse the domain dis-
criminator. Thus the extracted features of two domains cannot
be discriminated [20]. Along the latter direction, we move a
new step towards transferring the relation knowledge between
graph-based data across different domains (i.e. skeleton-based
sequences across different datasets). More recently, Ding et al.
[47] presented a graph adaptive knowledge transfer (GAKT)
model for unsupervised domain adaptation. Significantly dif-
ferent from this work, which performed graph-based label
propagation for target samples, we aim to transfer the relation
information in the graphed-based data across source domain
and target domain. Yang et al. [48] explored the latent graphs
between pairs of data units from large-scale unlabeled data
and transferred the graphs to the downstream task. This has
been shown to be effective on several NLP tasks and pixel-
level image classification. Inspired by this idea, we explore
the transferable knowledge between graphs for skeleton-based
action recognition in domain adaptation scenario, and further
extend it to another task for group activity recognition with
multi-modal inputs.

D. Group Activity Recognition

Group activity recognition is an important branch of human
behaviour understanding, which presents significant research
value for some real-world applications like sport video analy-
sis, traffic surveillance and many others. The main challenge
of this problem is to model the relationship of different people,
and numbers of works have been proposed to address this issue
based on hand-crafted features [49]–[51] and deep learning
models [52]–[59] respectively. Recently, Tang et al. [59]
leveraged the attention knowledge in the semantics modality
(the words of individual actions and group activity), to guide
the learning process of appearance modality. In this paper, we
move a further step which transfers the relation knowledge
across the two modalities and shows the superior performance.

E. Knowledge Distillation

As a pioneering work, Hinton et al. [25] proposed the
concept of “knowledge distillation”, which aims to utilize the
knowledge in a network with better performance (Teacher) to
guide another network (Student) during optimization. Towards
this direction, a series of approaches have been proposed
to enforce “Student” to mimic “Teacher” based on their
softmax outputs [25] or the intermediate features [24], [60],

Fig. 2. Comparison of our GINs with conventional methods for knowledge
transfer. (a) Conventional methods usually perform transfer at intermediate
feature level. (b) Our transfers the intrinsic relation across different graphs,
which can better preserve the relation information after transfer.

[61], [61], [62] of the two networks. More recently, video
analysis has also benefited from knowledge distillation. For
human activity analysis, several works have been proposed
to utilize privileged information (e.g., RGBD videos) during
training, and only single modality (e.g., only RGB videos)
during testing [59], [63], [64]. Different from these works,
which performed mimicking at vanilla features or the attention
scores [59] of the two networks, we attempt to transfer the
knowledge across different graphs through the weight matrices
containing relation information of the input data.

III. APPROACH

A. Graph Interaction Networks

We present our main idea in Fig. 2. Conventional ap-
proaches for knowledge transfer usually focus on the interme-
diate vanilla features, which might lose relation information of
the graph-based data. In comparison, our GINs aim to transfer
the relation knowledge across different graphs, during which
the relation knowledge is well preserved.

As illustrated in Fig. 2(b), we aim to transfer the relation
knowledge from the upper graph to the bottom graph. For
the upper graph G1(X1, A1), X1 = {x1,1, x1,2, ..., x1,N}
denote the node features, while A1 represents a weight matrix
which captures the relationship between different nodes [12],
[14], [16], [27]. Mathematically, the element Aij encodes the
connection weight between the i-th node and the j-th node,
which can be formulated as A1,ij = f(x1,i, x1,j). In practice,
there are different versions for f (we compare them in the
section IV.C) and we apply the following method empirically.
In order to obtain symmetric weight matrix A1, we first embed
X1 into a set of latent vectors Xem

1 = {xem1,1 , xem1,2 , ..., xem1,N}
by a fully-connected layer. Then we calculate the dot product
of Xem

1 and its transposition (Xem
1 )T as follow:

A1 = Xem
1 · (Xem

1 )T . (1)
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Fig. 3. The framework of our method for unsupervised skeleton-based action recognition during training. The input sequences come from two datasets with
different distributions. First, we send the data from source domain and target domain into the same base network to extract joint-level features. Then we feed
those features as the input to our GINs, aiming at getting the relationship among the N joints for each person and the output node features for the downstream
task. On one hand, we use the output feature from the source domain to train the label predictor under the supervision of source labels. On the other hand,
we feed the weight matrices from two domains into a domain classifier. By reversing the loss of the domain classifier during back-propagation, our GINs are
capable to reduce the domain shift between the two weight matrices, which contain the relationship among N joints from different domains.

Along with the weight matrix A1, we sent the node features
X1 into a graph convolutional layer (denoted as GCN in Fig.
2(b)) for non-grid structure representation learning:

Xout
1 = A1X1W1, (2)

where W1 is a learnable weight matrix. For the bottom graph
G2(X2, A2), X2 = {x2,1, x2,2, ..., x2,N}, we perform the same
process on X2 and obtain A2 and Xout

2 correspondingly. In
summary, this core part of our GINs can be formulated as a
module with multi-input and multi-output as:

Xout
1 , Xout

2 , A1, A2 = GINs(X1, X2). (3)

The output features Xout
1 , Xout

2 are utilized for the down-
stream task. The weight matrices A1, A2, embodied with
the relation information, are adopted for the relation transfer
between two graphs.
Objective Function: Our GINs targets at two objectives. The
first is to learn discriminative representations for each graph.
The second is to transfer the knowledge from G1 to G2.
Towards these goals, we minimize the following loss function
during the optimization process:

J = J task
O + λJ task

T (A1, A2). (4)

Here λ is a trade-off parameter, “task” can be instanti-
ated to a specific task, such as SAR (skeleton-based action
recognition) or GAR (group activity recognition). The total
loss J contains two terms. The first term J task

O is the original
loss of the task (e.g., recognition loss). And the second term
J task
T (A1, A2) is a transfer loss, which enforces the adjacent

matrices A1, A2 from two domains to be close with each other.

B. Unpaired Relation Transfer

First, we show that our GINs can be employed for unpaired
relation transfer across different datasets, which consists of
graph-based data (e.g. skeleton-based videos).

Preliminaries: We consider an unsupervised domain adap-
tation setting for skeleton-based action recognition. Suppose
we have a source domain Ds = {(xsi , ysi )}

ns
i=1 of ns labeled

skeleton-based sequences and a target domain Dt = {(xtj)}
nt
j=1

of nt unlabeled examples. The source domain and target do-
main are sampled from different joint distributions P (Xs,Ys)
and Q(Xt,Yt). The goal of this section is to develop a model,
which generalizes well on the target domain, only with the
supervision of source domain labels during the training stage.
Since the key challenge of this problem is the shift between
two domains, numbers of works have explored to reduce the
distribution discrepancy. Motivated by the generative adver-
sarial networks (GANs), a series of approaches have been
proposed based on the framework of two-player minimax
game [20]–[22]. The first player is a domain discriminator,
which aims to distinguish the source domain from the target
domain. The second player, which is a feature extractor trained
simultaneously, targets at confusing the domain discriminator.
Inspired by this idea, we make further exploration on graph-
based data. Rather than transferring the knowledge at the
feature level, we pay more attention to the intrinsic relation in
the graphs.

GINs for Skeleton-based Action Recognition: Skeleton-
based action recognition has been explored widely in the past
few years. Motivated by the fact that the joints and bones
of a skeleton-based body can be considered as the nodes and
edges of a graph respectively, numbers of works have explored
the graph-based model for this task and achieved promising
progress. Different from most previous works, which focus
on the supervised learning setting on one dataset, we explore
a new setting in unsupervised learning across two different
datasets. The first dataset is a source domain with labels, and
the second dataset is a target domain without labels. This is a
scenario which is more close to real-world applications.

In this problem, the input is a skeleton-based video with a
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Fig. 4. Illustration of our approach for group activity recognition based on the Teacher-Student paradigm. During training, the inputs are a set of tracklets
and individual action words, which can be treated as two types of graph-based data in different modalities (we denote them as appearance graph and semantics
graph). We feed their extracted features into our GINs simultaneously, which aims to distill the relation knowledge in the semantics graph to guide the learning
process of the appearance graph. We aggregate the output node features of the graph by attention pooling and send them into a classifier to obtain the label
of group activity. During testing, as the words (labels) of individual actions are not available, we can not use them nor their weight matrix. Therefore, we
only employ the student network in testing period. Note that the network parameters of the Teacher Network and the Student Network are not shared.

size of L × N × 3, where L, N and 3 denote the number
of video frames, the number of joints and the number of
dimensions of 3D positions, respectively. First, for all sam-
ples in the source domain and target domain, we employ
a model to extract a set of node features as {Xl}Ll=1 =
{Xs,l}Ll=1 ∪ {Xt,l}Ll=1

3, where Xs,l, Xt,l ∈ RN×d denote
the representation at the lth frame of source domain and
target domain, respectively. Then, we sent them into our GINs
module to model the relationship of different nodes as follow:

Xout
s,l , X

out
t,l , As,l, At,l = GINs(Xs,l, Xt,l). (5)

Here Xout
s,l , X

out
t,l refer to the output features of the GINs,

and As,l, At,l are the output weight matrices. The subscripts
l, s and t represent the l−th frames, source domain and target
domain, respectively.

During the training stage, in order to utilize the supervision
labels of source domain, we flatten the {Xout

s,l }Ll=1 into a
vector, and send into a label predictor Gy with two fully
connected layers to output the final prediction. We perform
max-pooling4 on {As,l}Ll=1, {At,l}Ll=1, and send the outputs
As, At into the domain classifier Gd, which contains three
fully connected layers. The loss function can be written as
follow according to the framework of Equation (4):

J = JSAR
O + λJSAR

T (As, At) (6)

=
1

ns

∑
xi∈Ds

JCE(Gy(GINsX(xi)), yi)

− λSAR

ns + nt

∑
xi∈Ds∪Dt

Jd(Gd(GINsA(xi)), di),

where GINsA(xi) and GINsX(xi) denote the output of
weight matrix and node feature of GINs respectively. di is a
domain label, which equals 1 if xi is from the source domain,
and 0 otherwise. The first term of J is the classification
loss for the main classification task, where we calculate the

3We present the details of feature extraction in Section IV.B.
4We study the influence of max-pooling operation on weight matrices in

Section IV.C

cross-entropy between the softmax output and the ground-truth
action label in the source domain. And the second term is
the transfer loss, which is designed for aligning the weight
matrices from the two domains. The second loss is subtracted
to confuse the domain discriminator during the training phase
and help GINs to learn the domain-invariant features. We
follow the DANN [20] and use the gradient reversal layer.
During the testing stage, we feed the feature Xout

s into the
Gy layer and predict the final label.

C. Paired Relation Transfer

In this subsection, we further employ our GINs for paired
relation transfer across different modalities. As an application
example, we study the problem of group activity recognition,
which aims to discern the activity label of a group of people.
As suggested in previous works, we can adopt a set of tracklets
of different people as pre-processed inputs. More recently,
Tang et al. [59] has explored another auxiliary input modality,
i.e. the words of individual actions, during training phase5.
They designed a Teacher Network for these semantics-based
modalities and a Student Network for the appearance-based
modality. Following this setting, we show that our GINs are
capable to transfer the relation knowledge from the Teacher
Network to the Student Network.
GINs for Group Activity Recognition: On one hand, we
denote the features of the Student Network as Xa = {xa,l}Ll=1,
where xa,l ∈ RN×d stands for the appearance features of
N people in the lth frame (See Section IV.B for details
of feature extraction). On the other hand, we represent the
semantics features (i.e. several words of individual actions)
as Xw ∈ RN×d. Thus, the {Xa, Xw} is a pair-wise input of
different modalities associated with the same video. Since a
group of people can be considered as a graph, where each node
represents a single person, and edge denotes the relationship
between different people, we can model the pair-wise input
as two graphs. At the lth frame, we feed the inputs into the

5We should not use these labels in the testing stage as they are not available.
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GINs module as:

Xout
a,l , X

out
w , Aa,l, Aw = GINs(Xa,l, Xw). (7)

Then we apply two attention pooling layers. For the Teacher
Network, the input of the attention pooling layers is Xout

w =
{xteachern }Nn=1. The attention pooling layer is derived as
follow:

sn = ReLU(W1x
teacher
n + b1) , (8)

αn = exp(sn)/

N∑
j=1

exp(sj) , (9)

wteacher =

N∑
n=1

αn · xteachern , (10)

where W1 and b1 denote the weighted matrix and biased term.
sn and αn refer to the score and the normalized attention for
the n-th person in semantics domain. The obtained wteacher

is sent into an fc layer for group activity recognition. For the
Student Network, the input of the attention pooling layer is
Xout

a = {{xstudentl,n }Ll=1}Nn=1. Similar to the Teacher Network,
the attention pooling layer is designed as below:

sl,n = ReLU(W2x
student
l,n + b2) , (11)

βl,n = exp(sl,n)/

N∑
j=1

exp(sl,j) , (12)

wstudent
l =

N∑
n=1

βl,n · xstudentl,n . (13)

The output feature {wstudent
l }Ll=1 are fed into a BiLSTM

layer and another fc layer to obtain the final result.
Relation Transfer by Graph Interaction: For semantics and
appearance modalities, there are two graph modules and they
consistently model the relationship of different people, thus
it is reasonable to consider these two modules jointly. As the
performance of the Teacher Network is better than the Student
Network6, we attempt to employ the relation knowledge of the
Teacher Network to guide the Student Network. In practice,
we first train the Teacher Network with the provided labels of
training samples. And with our proposed GINs, the Student
Network is enforced to mimic the relation knowledge in the
Teacher Network during the optimization course with the
following loss function:

J = JGAR
O + λJGAR

T (Aw, Aa)

= JCE(Pa, y) + λGAR||Aw −Aa,mid||22.

Here λGAR is the hyper-parameters to balance the effects
of two different terms to make a good trade-off. The first
term is a cross-entropy loss for activity recognition. Pa and
y represent the softmax output and ground-truth label of
the Student Network. The second term aims to enforce the
Student’s relation to preserve the Teacher’s semantics relation.
We adopt the MSE loss to measure the distance between the
weight matrices of the Teacher Network and Student Network.

6Because the inputs of Teacher Network are the ground-truth label of
individual actions, while the Student Network takes the tracklets as inputs
and requires a more complex feature learning process.

In the process of training, we optimize all the parameters of
our Student Network by the backpropagation through time
(BPTT) algorithm [65]. It is worth attention that the Teacher
Network is only allowed to guide the Student Network during
the training phase, as the ground-truth label Y = {yn}Nn=1 is
not available at the testing stage.
Utilizing Location Information: Previous works have shown
the privileges of location information for action recognition.
To further boost the recognition performance, we make full
use of the location information, which is associated with the
provided tracklets. Hence, no extra annotations are required.
Inspired by [15], which embeds the position information for
graph construction, we define another weight matrix Aloc.
First we calculate the central location of the mth person as
cm = (γxm,mid/WI , γym,mid/HI). Here, we use xm,mid

and ym,mid to represent the central positions coordinates of
the input tracklets. WI and HI are width and height of the
video frame. and γ is a scaled parameter, which is set to 10
empirically. Instead of being learnt by networks, each element
amn in Aloc is defined based on the spatial coordinates as:
amn = exp(−||cm − cn||22/2). In this way, amn will turn to
be a large value if two people are closed to each other, and
vice versa. Parallel with the original GINs module, we feed
the node features into other GCN models:

X loc,out
a,l = Aloc

a,lXa,lWa, X loc,out
w = Aloc

w,midXwWw. (14)

The output features X loc,out
a,l , X loc,out

w are concatenate with
Xout

a,l , X
out
w for the downstream task. We do not perform

transfer on Aloc, as it is fixed based on the location infor-
mation. Besides, the location feature of a single person is a
4-dimension vector floc = [x1, y1, x2, y2], which is normalized
into [-1,1] based on the width and height of the corresponding
frame. The location feature is utilized twice, concatenated
at the node feature level and the layers before the final
classification for better performance.

D. Discussion

In this subsection, we provide some deeper discussion on
our proposed method.
Discussion on the Insight of GINs: Recent works have
shown the great importance of relation information for var-
ious video analysis tasks, especially for skeleton-based action
recogniton [16], [35]–[39] and group activity recognition [57],
[58]. In this paper, we further explore the transferable relation
knowledge across different graphs. Therefore, G2 (Section
III.A) can better mine relation information from G1 which
enables it to learn more powerful knowledge. Motivated by the
fact that not all the features need to be transferred, our GINs
make alignment based on the weight matrices of different
graphs at the higher level. Specifically, for skeleton-based
action recognition, conducting fully alignment on the two
distributions of node features is unreasonable, because some
information (e.g. viewpoint, height) is not strictly required
to be similar in the two domains. However, the relations of
different joints are irrelevant to the two domains and should
maintain consistently. And for group activity recognition,
different people have different contributions to the final results.
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Therefore, it is unnecessary to transfer all the people’s features
and more reasonable to transfer their relations.
Discussion on Relations to be Transferred: (1) For skeleton-
based action recognition, there might already be some kind
of relation graphs such as the physical structure of human
body, but it is not sufficient for the recognition task. For
example, the relation between the two hands is important for
recognizing the action “clapping hand”, but the two hands
are disconnected physically. Therefore, it is important to
learn other “action-aware relation” (i.e., the relation which
is important for recognizing the action class). Actually, there
have been a series of works utilizing the automatical learning
scheme to explore this kind of relation for skeleton-based
action recognition [16], [36], [37], [66]. And in this paper,
we study the unsupervised domain adaptation setting and aim
to transfer this relation learned in the source dataset to the
target dataset. In the source dataset, the relation is learned with
the supervision of action label. Thus it is more privileged for
recognizing the action than that in the target dataset where the
action label is unavailable. (2) For group activity recognition,
similarly, we aim to explore the “activity-aware relation”
of different people for the recognition task. For example,
discovering the strong relation between the “spiking” and
“setting” players would benefit recognizing the group activity
“spike". In fact, this kind of relation has also been explored
by several methods in an automatically learning scheme [58],
[67]. In this work, we target at transferring this relation learned
in the semantics domain to that of appearance domain. Since
the data in the semantics domain has higher-quality than that
in the appearance domain, the semantics relation is better for
recognizing the group activity. We further demonstrate this
viewpoint in Fig. 9.
Discussion on the Loss Function: In this paper, we propose
a general objective function for GINs as J = J task

O +
λJ task

T (A1, A2), where J task
O is the classification loss and

J task
T (A1, A2) is a transfer loss, which enforces the adjacent

matrices A1, A2 from two domains to be close with each
other. Specifically, we design two formats of J task

T for the two
tasks according to their different goals. For unpaired relation
transfer (the skeleton-based action recognition task), the core
is to reduce the distribution discrepancy between the source
domain and target domain, and it is hard to find paired samples
to perform mimicking. Therefore, we employ the adversarial
loss for JSAR

T . For paired relation transfer (the group activity
recognition task), the goal is to enforce each sample in the
appearance domain to mimic its paired sample in the semantics
domain. Hence, we adopt the MSE loss for JGAR

T .

IV. EXPERIMENTS

A. Datasets and Experiment Settings

For skeleton-based action recognition, we adopted NTU
RGB+D dataset (NTU) [68], SBU Kinect Interaction dataset
(SBU) [69], Online RGBD Action dataset (ORGBD) [70]
and MSRDaily Activity3D dataset (MSRDA3D) [71]. We
conducted experiments under two new-proposed settings as

NTU → SBU and ORGBD → MSRDA3D7.
NTU → SBU: The NTU RGB+D dataset is a large-scale
dataset for skeleton-based action recognition, which contains
56880 skeleton-based videos of 60 action categories. In com-
parison, SBU is a smaller dataset, which comprises 282
skeleton-based sequences of 8 classes. In order to perform
unsupervised domain adaptation, we made the following two
pre-process steps on the NTU dataset. (1) We selected the
sequences of the 8 categories8 corresponding to those in SBU.
Finally, 7513 videos were selected out. (2) As SBU and NTU
were collected by Kinect v1 and Kinect v2, the number of
joints for each person are 15 and 25 respectively. Hence, we
only used the 15 corresponding joints9 in the NTU dataset.
ORGBD → MSRDA3D: Both the Online RGBD Action
dataset and the MSRDaily Activity3D dataset are captured by
the Kinect device, and the number of joints for each person is
20. For the unsupervised domain adaptation task, we adopted
the 5 action categories which exist in both datasets10. As
results, we obtained 240 and 100 videos from the ORGBD
dataset and the MSRDA3D dataset respectively.

For group activity recognition, we evaluated Volleyball
dataset [72] and Collective Activity (CA) dataset [73].
Volleyball Dataset [72]: The Volleyball dataset is currently
the largest benchmark for group activity recognition. It con-
sists of 4830 clips which are trimmed from 55 long sport
videos and each clip contains 10 frames. The annotations
include the tracklets of players, 9 individual action labels
(waiting, setting, digging, falling, spiking, blocking, jumping,
moving and standing) and 8 group activity categories (right
set, right spike, right pass, right winpoint, left winpoint, left
pass, left spike and left set). We follow the protocol adopted
in [72] to separate the training/testing sets. Our experimental
results are based on the evaluation metrics of Multi-class
Classification Accuracy (MCA) and Mean Per Class Accuracy
(MPCA).
Collective Activity (CA) Dataset [73]: The Collective Ac-
tivity dataset is a widely used dataset for group activity
recognition. It contains 44 video clips, which are labeled with
6 individual action classes (NA, crossing, walking, waiting,
talking and queueing) and 5 group activity labels (crossing,
walking, waiting, talking and queueing). Similar to the Vol-
leyball dataset, there are 10 frames in each short clip. We adopt
the training and testing splits as suggested in [49]. Noticing
the clarification in [73] which originally presented the dataset,
the “walking” activity is actually an individual action but not a
collective activity, we adopted the experimental setup in [74],
to combine the “walking” and “crossing” categories into a
new class of “moving”. We report the performance of Mean
Per Class Accuracy (MPCA), based on which we can better
compare with the previous results under this setting.

7A → B denotes that we used A as source domain dataset and B as target
domain dataset.

8We selected the action ID {59, 60, 51, 52, 58, 55, 56, 50} in the NTU
dataset, which correspond to {1 ∼ 8} in the SBU dataset.

9We chose the joints with ID {4, 3, 2, 9, 10, 12, 5, 6, 8, 17, 18, 19, 13,
14, 15} in order of the SBU dataset.
10We chose the action ID {0, 1, 2, 4, 5} in the ORGBD dataset, which

corresponds to {1, 2, 6, 4, 3} in the MSRDA3D dataset.
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Fig. 5. Examplar frames from different datasets. We conducted experiments on (a) NTU RGB+D dataset (NTU), (b) SBU Kinect Interaction dataset (SBU),
(c) Online RGBD Action dataset (ORGBD) and (d) MSRDaily Activity3D dataset (MSRDA3D) for skeleton-based action recognition. We evaluated (e)
Volleyball dataset and (f) Collective Activity (CA) dataset for group activity recognition.

B. Implementation Details

Skeleton-based Action Recognition: In our experiments,
we followed the standard protocol for unsupervised domain
adaptation [20], [21]. For each person, we first subtracted the
coordinates of the torso (NTU → SBU) or spine (ORGBD
→ MSRDA3D) from the other joints. Then we normalized
each input video to a fixed length L with bilinear interpolation
operation. L was set to 16 in our experiments. Similar to [75],
we produced motion data by making the difference between
two adjacent frames at the coordinates dimension and sent
the two-stream data into the Feature Extractor network. For
each stream, the input data passed through two convolution
layers to learn the point-level representation, and other two
convolution layers to learn the co-occurrence information
between joints [75]. The output features correspond to the
node features X described in Section III.A, which were then
sent into our GINs module. We set the trade-off parameter
λSAR = λ∗ [20] as follow:

λ∗ = λp =
2

1 + exp(−γ · p)
− 1, (15)

where p linearly changed from 0 to 1 and γ was set to be 10 in
our experiments. This schedule gradually increased λ∗ from 0
to 1 with the training process. We set the initial learning rate
for the base network to 0.0001 and discriminator network to
0.00005. For each batch, we randomly selected 128 unpaired
videos (64 from source domain and 64 from target domain).
Group Activity Recognition: The input of Teacher Network
is a set of words (labels) of individual actions. We encoded
them into one-hot vectors and passed them through an fc layer
with the size of 32. We also utilized position coordinates and
transformed them into 32 dimensions using another fc layer.
Then we concatenated these two types of features as the input
Xw for GINs. We set the initial learning rate to 0.003 for the
Teacher Network. The input of the Student Network is a set
of tracklets. We adopted the same scheme in [59] to extract
RGB features based on VGG16 and LSTM networks. For
better model the dynamic information, we also combined the
optical flows [59], [76] and location coordinates. We encoded

RGB features, optical flow features and position features
to 1024 dimensions, 1024 dimensions and 256 dimensions
respectively. Then we concatenated these encoded features as
the initial appearance representation Xa. We utilized the same
adjacency matrix in the Teacher Network to guide those in the
Student Network. Since the Volleyball dataset is much larger
than the CA dataset, we stacked three graph convolution layers
for the Student Network for the previous one, and utilized one
graph convolution layer for the other to avoid overfitting. The
hidden size of the bidirectional LSTM layer is 128. During
the Teacher guided training process, the Student Network was
optimized with the initial learning rate of 0.00003 for the
Volleyball dataset and 0.0001 for the CA dataset. As for ratio
of different parts of losses, we set λGAR = 1. For both the
Teacher Network and Student Network, we adopted Adam
optimization method. The batchsize was set to be 16 for the
Volleyball dataset and 8 for the CA dataset.

C. Evaluation on Skeleton-based Action Recognition
In this task, we compare our method with the following

baselines and state-of-the-art methods:
• Source Only: The “Source Only” model is trained without

utilization of data from target domain (there is no domain
classifier subnetwork in this model).

• Geo Transfer: In order to see whether the geometric trans-
fer can reduce the domain shift between two datasets, we
evaluated “Geo Transfer” method by rotating the people
based on the joints of “left-shoulder”, “right-shoulder”
to align the x axis, and “torso”, “neck” (NTU → SBU)
or “spine”, “shoulder center”(ORGBD→ MSRDA3D) to
align the y axis. This makes people in all videos facing
to the camera frontally.

• MMD [77], CDAN [22], DANN [20], JAN [21],
GAKT [47] and BSP [78]: These are recent state-of-the-
arts for unsupervised domain adaptation, we employed
the value reported in the corresponding original papers
for the parameter λSAR.

1) Experimental Results on NTU → SBU: As shown in
Table I, we first find that “Geo Transfer” method causes
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Fig. 6. The confusion matrices of different methods on the SBU (top row) and ORGBD (bottom row) datasets. The ground truth labels are shown on the
vertical axis, while the predicted labels are displayed on the horizontal axis. Labels of the NTU → SBU: 1: punching, 2: exchanging something, 3: hugging,
4: handshaking, 5: pushing, 6: kicking, 7: walking apart, 8: walking towards. Labels of the ORGBD → MSRDA3D: 1: drinking, 2: eating, 3: using laptop,
4: making phone call, 5: reading book.

TABLE I
COMPARISON OF THE SKELETON-BASED ACTION RECOGNITION

ACCURACY (%) UNDER THE UNSUPERVISED DOMAIN ADAPTATION

SETTING. SOURCE DOMAIN: NTU DATASET, TARGET DOMAIN: SBU
DATASET.

Method Accuracy Year
Source Only 38.4 -
Geo Transfer 35.8 -
MMD [77] 31.4 2015
DANN [20] 46.3 2017
JAN [21] 47.6 2017
CDAN [22] 39.9 2018
GAKT [47] 31.8 2018
BSP [78] 32.4 2019
GINs 50.7

a decline in performance based on “Source only”. This is
mainly because all the skeleton sequences in “NTU → SBU”
setting contain two people, and the geometric transfer method
cannot deal well with the interaction action (In contrast, this
simple spatial transformation can improve the performance
on individual actions. Please see the results in “ORGBD →
MSRDA3D”). Hence, other transfer learning methods should
be explored. Moreover, we find our GINs model achieves
50.7% accuracy, which outperforms other compared state-of-
the-art methods. We further show some confusion matrices in
Fig. 6, where our model has clear advantages on recognizing
the actions of “kicking” and “walking apart”.
Ablation Study: We provide some ablation study results in
Table II, where DANN [20] corresponds to the method in
Fig. 2(a) that transfers the vanilla features. For Node-Trans1,
Node-Trans2 and Node-Trans3, they construct graphs as Fig.

TABLE II
ABLATION STUDY OF THE SKELETON-BASED ACTION RECOGNITION

ACCURACY (%) UNDER THE UNSUPERVISED DOMAIN ADAPTATION

SETTING. SOURCE DOMAIN: NTU DATASET, TARGET DOMAIN: SBU
DATASET.

Method Construct Graph? Transfer Level Acc.
DANN [20] No Vanilla Features 46.3
Node-Trans1 Yes (X1,X2 ) 48.2
Node-Trans2 Yes (Xem

1 ,Xem
2 ) 45.9

Node-Trans3 Yes (Xout
1 ,Xout

2 ) 48.0
GINs Yes (A1,A2 ) 50.7

TABLE III
ANALYSIS ON DIFFERENT FORMULATIONS OF WEIGHT MATRIX A FOR

SKELETON-BASED ACTION RECOGNITION. SOURCE DOMAIN: NTU
DATASET, TARGET DOMAIN: SBU DATASET.

Method Aij Accuracy
Sum ||xemi + xemj ||22 38.7
Relation Module [19] gθ(concat[x

em
i ;xemj ]) 48.2

Gaussian Distance exp(−||xemi − xemj ||22/2) 46.1
Product < xemi , xemj > 50.7

2(b), but perform transfer at node feature level (X1 → X2),
(Xem

1 → Xem
2 ) and (Xout

1 → Xout
2 ). Actually, performing

transfer at (A1 → A2) is a more flexible constraint on the
two graphs, as it does not strictly align the node level features
across two graphs. As a result, our GINs achieve 4.4%, 2.5%,
4.8% and 2.7% improvements on DANN, Node-Trans1, Node-
Trans2 and Node-Trans3 respectively. Convincingly, these re-
sults demonstrate the effectiveness of our proposed scheme for
relation transfer.
Analysis on the Weight Matrix: As the weight matrix is
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TABLE IV
STUDY ON THE MAX-POOLING OPERATION. WE REPORT THE

SKELETON-BASED ACTION RECOGNITION ACCURACY (%) UNDER THE

NTU→SBU SETTING.

Method GINs (with max-pooling) GINs (without max-pooling)
Accuracy 50.7 45.4

TABLE V
ANALYSIS ON DIFFERENT λSAR FOR SKELETON-BASED ACTION

RECOGNITION. SOURCE DOMAIN: NTU DATASET, TARGET DOMAIN,
SBU DATASET.

λSAR 0.01λ∗ 0.1λ∗ λ∗ 10λ∗

Accuracy 50.3 49.5 50.7 44.1

an important factor in graph convolutional network, we study
different ways to construct the weight matrix A aside from
our original formulation in Equation (1). As shown in Table
III, we explore 4 methods to build the weight matrix A based
on the i-th and j-th embedded node features xemi and xemj .
The “Relation Module” is proposed in [19], and our proposed
method is equal to the “Product”, which calculates the inner-
product of xemi and xemj for Aij . As a result, we observe
that the “Product” method achieves the best performance of
50.7%, which is 12.0%, 2.5% and 4.6% higher than the “Sum”,
“Relation Module” and “Gaussian Distance” respectively.
Analysis on the Max-pooling Operation on Weight Matri-
ces: We study the effect of max-pooling method on weight
matrices at the setting of NTU→SBU in Table IV. The “GINs
(without max-pooling)” denotes passing the matrices at each
time step to the domain classifier, which causes 5.3% decrease
based on the “GINs (with max-pooling)”. This is because not
every frame in the source video need to be strictly aligned
with that in the target video, and the max-pooling is a proper
operation to aggregate the temporal information of a video.
Analysis on the Hyper-parameter λSAR: We also study the
effect on different λSAR in Table V. When λSAR ≤ λ∗, the
accuracy varies relatively slightly and achieves the maximum
value of 50.7% at λ∗. When λSAR increases to 10λ∗, the
accuracy drops to 44.1% which indicates that λSAR cannot
be too large.
Analysis on the Influence of Different Amounts of Training
Samples: We conduct experiments under the NTU→SBU
setting to study the influence of the amount of source domain
data. We use the training samples in the source domain
under the ratio of [25%, 50%, 75%, 100%]. We evaluate our
GINs and the baseline method DANN [20], and present the
compared results in the following Fig. 7. As it shows, both two
methods can achieve better results with more training data, and
our proposed GINs are more effective. Moreover, our GINs
yield a relatively promising result of 41.4% with only 50%
training data from source domain. It outperforms the accuracy
of 38.4% obtained by the “source only” method using 100%
training data.

2) Experimental Results on ORGBD → MSRDA3D: Dis-
cussion: Although great progress have been achieved in recent
years for supervised skeleton-based action recognition [37],

TABLE VI
COMPARISON OF THE SKELETON-BASED ACTION RECOGNITION

ACCURACY (%) UNDER THE UNSUPERVISED DOMAIN ADAPTATION

SETTING. SOURCE DOMAIN: ORGBD DATASET, TARGET DOMAIN:
MSRDA3D DATASET.

Method Raw Data Geo Transfer Year
Source Only 18.7 48.3 -
MMD [77] 25.0 25.5 2015
DANN [20] 35.2 39.3 2017
JAN [21] 34.6 49.2 2017
CDAN [22] 31.3 48.7 2018
GAKT [47] 34.9 48.4 2018
BSP [78] 31.2 41.3 2019
GINs 40.2 51.5

Fig. 7. Study on different ratios of training samples in the source domain
(NTU dataset) for skeleton-based recognition under the unsupervised domain
adaptation setting (NTU→SBU).

[66], [75], the overall experimental results are much lower
under the unsupervised setting. This indicates the great chal-
lenges for this problem, which leaves plenty of room for the
future work to achieve further improvements. Moreover, we
have also conducted experiments on SBU → NTU, which
adopted SBU as a source dataset and NTU as a target dataset.
However, the results on all methods are inferior (less than
25%)11. This is because the size of SBU dataset is rather
small, thus the samples of the source domain are insufficient
to optimize the model well. In the future, it is desirable to
collect dataset with larger scale for this interesting problem.

We then conduct experiments on the ORGBD →
MSRDA3D setting, where the skeleton sequences only contain
a single person. As shown in Table VI, We test 7 methods
and ”Source Only” with ”Raw Data” and ”Geo Tranfer”.
”Raw Data” refers to the original data from the dataset,
while the ”Geo Transfer” refers to the data after the spatial
transformation. As a result, we can see ”Geo Transfer” can
improve the result for all the methods in our experiments,
which indicates the effectiveness of the spatial transformation
for action performed by a single person. We notice that MMD
and DANN methods are weaker than "Source Only" when
using "Geo Transfer" pre-process. This is because the "Geo
Transfer" operation has changed the structure of the skeleton-
based video, which might bring more difficulties for some
specific methods like MMD and DANN. Our proposed GINs

11[MMD, DANN, JAN, CDAN, GAKT, BSP, GINs] achieve an accuracy(%)
of [18.4, 19.3, 19.3, 23.1, 21.2, 19.8, 24.1] respectively.



11

TABLE VII
COMPARISON WITH [79]. SPTS+GCNFW IS EXPLORED IN THE “FUTURE WORK” SECTION [79]. AM REFERS TO THE ATTENTION MODEL, GCNpos ,

GCNfc AND GCNpr DENOTE THE GRAPH CONVOLUTIONAL NETWORKS WITH DIFFERENT WEIGHT MATRICES. SEE THE TEXT FOR MORE DETAILS.

Method SPTS [79] SPTS+GCN [79] SPTS+GCNFW [79] GINs(Ours)
Student Network AM GCNpos + AM GCNpos+GCNfc + AM GCNpos+GCNpr + AM
Teacher Network AM GCNpos + AM GCNpos+GCNfc + AM GCNpos+GCNpr + AM
Transfer Level AM AM GCNfc GCNpr
MCA(%) 90.7 91.2 91.1 91.7

TABLE VIII
COMPARISON OF DIFFERENT EXPERIMENTAL SETTINGS ON THE

VOLLEYBALL DATASET. DURING TRAINING, BOTH TEACHER AND

TEACHER* UTILIZE THE GROUND-TRUTH OF INDIVIDUAL ACTIONS.
DURING TESTING, TEACHER EMPLOYED THE GROUND-TRUTH LABEL,

WHILE TEACHER* USED PREDICTED LABELS.

Method MCA MPCA
Teacher 93.3 91.8
Teacher* 74.0 73.4
Student-only (baseline) 90.5 90.8
Student-soft [25] 90.2 90.4
Student-feature 90.1 90.5
Student-attention 91.1 91.7
Student-full (GINs) 91.7 92.3

TABLE IX
COMPARISON OF THE GROUP ACTIVITY RECOGNITION ACCURACY (%) ON

THE VOLLEYBALL DATASET.

Method MCA MPCA Year
HDTM [52] 86.8 85.8 2016
CERN-2 [53] 83.3 83.6 2017
SSU [54] 90.6 – 2017
SRNN [56] 83.5 – 2018
stagNet [57] 89.3 84.4 2018
RCRG [58] 89.5 – 2018
SPTS [79] 90.7 90.0 2018
SPTS+GCN [79] 91.2 91.4 2019
GINs 91.7 92.3

achieve the best performance of 40.2% and 51.5% and exceeds
the state-of-the-arts. We further display the comparison of the
confusion matrices using ”Geo Transfer” in Fig. 6, where the
GINs show its superiority for classifying the action “reading
book”.

Similar to the previous subsection, we also conducted ex-
periments on MSRDA3D → ORGBD, where MSRDA3D is a
smaller dataset with 100 videos and ORGBD with 240 samples
is relatively larger. However, the results are still unideal as
SBU → NTU. This phenomenon further suggests that the
amount of training data in the source domain is essential for
this problem and larger dataset is encouraged to be collected
as a future work.

D. Evaluation on Group Activity Recognition

1) Experimental Results on the Volleyball Dataset: Table
IX presents the experimental results of our GINs model com-
pared with recent approaches for group activity recognition.
We observe that our GINs achieve 91.7% and 92.3% accuracy

on MCA and MPCA metrics respectively, which outperform
the state-of-the-arts. We further show the confusion matrix of
our method in Fig. 8(a). As it shows, our model can recognize
most action categories well except the activity “rset” (“right-
set”), which are more likely to be confused with the activity
“rpass” (“right-pass”).

Table VII further compares our GINs with the models
proposed in [79], which also apply the Teacher-Student frame-
work for the group activity recognition task. We highlight
the differences and our advantages as follows: (1) The main
contributions of [79] are SPTS and SPTS+GCN. SPTS
contains two attention models (AMs) in the Teacher and Stu-
dent Networks, and the transfer is performed at the attention
level. SPTS+GCN builds two graph convolutional networks
(GCNspos) upon the Teacher Network and Student Network
based on the position information of different people. But still,
the transfer is performed at the attention level. In comparison,
we perform transfer at the relation level. In this way, the
relation information in the Teacher Network can be better pre-
served. (2) In the “Future Work” section, [79] mentioned the
direction to transfer the knowledge across different graphs and
make a preliminary study in the “Supplementary Material” part
(denoted as “SPTS+GCNFW ” in Table VII). Specifically, it
performs transfer based on other graph convolutional networks
(GCNsfc), where the n-th row of weight matrix A is simply
obtained by the fully-connected layer of the node features.
However, this strategy breaks the symmetric characteristic of
the graph and causes a slight decrease over SPTS+GCN. To
address this, we calculate the inner-product of the embedded
node features for GCNspr, which guarantees the symmetric
characteristic of the weight matrix during graph construction.
(3) Experimental results in Table VII have also demonstrated
the effectiveness of our proposed GINs compared with the
models in [79]. Moreover, unlike [79] which focuses on the
application of group activity analysis, we further show that our
GINs can generalize well on other tasks like skeleton-based
action recognition.

Ablation Study: We further present different settings of our
method in Table VIII. On one hand, the Teacher Network,
which takes ground-truth of individual action during train-
ing and testing phase, achieves very promising performance.
However, the individual action labels are often not available
at test time in a real-world scenario. And unfortunately, the
Teacher* network, which takes the predicted individual action
labels as inputs during testing, achieves poor results of 74.0%
(MCA) and 73.4% (MPCA) respectively. This is because the
predicted words (label) of individual action might sometimes
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Fig. 8. The confusion matrices of our method on the Volleyball dataset (left)
and CA dataset (right).

TABLE X
ANALYSIS ON DIFFERENT λGAR FOR GROUP ACTIVITY RECOGNITION

ON THE VOLLEYBALL DATASET.

λGAR 0.01 0.1 1 10
MCA 91.2 91.5 91.7 91.3
MPCA 91.9 92.2 92.3 92.1

be inaccurate, and this will heavily harm the performance
of the Teacher* Network, which is sensitive to the inputs.
On the other hand, we also conducted experiments based on
other transfer methods. Student-feature indicates that we used
the feature from the last layer of the Teacher Network to
supervise that of the Student Network accordingly. We also
evaluated Knowledge Distillation [25] method (Student-soft),
which is the pioneering work in knowledge distillation area.
For fair comparison with [59] which did not employ GCN
models on both Student Network and Teacher Network, we
performed mimicking based on the attention scores (Student-
attention) but not weight matrices of our GINs. As shown in
Table VIII, our GINs obtain 1.2% (MCA) and 1.5% (MPCA)
improvements based on the baseline model. Moreover, it
consistently outperforms other transfer methods, which has
further demonstrated the effectiveness of our proposed scheme
for relation transfer.
Analysis on the Hyper-parameter λGAR: We present of
effects on different λGAR in Table X. Both MCA and MPCA
reach the peak when λGAR = 1, which indicates that the
importance of the transfer loss JGAR

T is equal to that of the
classification loss JGAR

O .
Analysis on the Weight Matrix: Similar to the skeleton-based
action recognition, we further explore different formulations of
the weight matrix A for the task of group activity recognition.
From the results displayed in Table XI, we observe that
the “Product” method yields the best performance (91.7%
MCA and 92.3% MPCA), which is slightly higher than the
“Distance” method (91.5% MCA and 92.3% MPCA). Hence,
in the following experiments, we also adopt the “Product”
method.
Analysis on the Influence of Different Amounts of Training
Samples: We evaluate our GINs and the baseline method
HDTM [52]. For both two methods, we extracted the features
based on the same model, which is pre-trained on the indi-

TABLE XI
ANALYSIS ON DIFFERENT FORMULATIONS OF WEIGHT MATRIX A FOR

GROUP ACTIVITY RECOGNITION ON THE VOLLEYBALL DATASET.

Method Aij MCA MPCA
Sum ||xemi + xemj ||22 90.8 91.1
Relation Module [19] gθ(concat[x

em
i ;xemj ]) 91.1 91.7

Gaussian Distance exp(−||xemi − xemj ||22/2) 91.5 92.3
Product < xemi , xemj > 91.7 92.3

TABLE XII
COMPARISON OF THE GROUP ACTIVITY RECOGNITION ACCURACY (%) ON

THE CA DATASET.

Method MPCA Year
Cardinality kernel [50] 88.3 2015
CERN-2 [53] 88.3 2017
RMIC [74] 89.4 2017
SBGAR [55] 89.9 2017
MTCAR [80] 90.8 2012
SPTS [79] 95.7 2018
SPTS+GCN [79] 95.8 2019
GINs 96.0

vidual labels. We then use these features under the ratio of
[10%, 15%, 20%, 25%, 50%, 100%] during training. As shown
in the following Fig. 10, more training data can bring more
benefits for both two methods. Specifically, when the ratio
of training samples increases from 10% to 15%, there is
a significant gain of GINs, which is also larger than the
improvement of HDTM. And when the ratio rises to 50%, our
GINs achieve a promising accuracy of 91.0%, which turns to
be a relatively saturated result.
Visualization: We further present several visualization results
on the Volleyball dataset. As shown in Fig. 8(a), after the
supervision of Teacher Network, the Student Network discov-
ers the strong relationships between two “blocking” people
on the left. Furthermore, on the right side, the “spiking” the
player has been linked to more players as he is the key
person to identify the “right-spike” group activity. In Fig. 8(b),
the Teacher Network only assigns the high relation score to
between the “setting” and “moving” players. So the connection
between the “setting” and “standing” people has been cut after
relation transferring.

2) Experimental Results on the CA Dataset: We finally
conduct experiments on the CA dataset and present the ex-
perimental result in Table XII. Our GINs obtain the result of
96.0%, which exceeds the other state-of-the-arts. We discover
that on the CA dataset the improvements of GINs based on the
SPA [59] and SPACI [79] are slight, while on the Volleyball
dataset our GINs outperform them clearly. We analyze the
reasons as follow: First, the Volleyball dataset is greatly larger
than the CA dataset in scale. Since our GINs are trained in a
data-driven scheme, it requires more training data to achieves
a better result. Second, there are about 12 people in each
video in the Volleyball dataset, while the number of people
in each sequence of the CA dataset is about 4. Moreover,
the relationship of different people in the Volleyball dataset
is much more complex than that of the CA dataset. Hence,
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Fig. 9. The visualization results. We present the learned relation knowledge of Teacher Network and Student Network (before and after relation transfer).
The relation scores between two players arrange from 0 to 1, as it is the output of a sigmoid function. For brevity, we only draw the relation with the score
higher than 0.8.

Fig. 10. Study on different ratios of training samples in the Volleyball dataset
for group activity recognition.

our GINs can further show its advantage on the previous
dataset as it is designed for relation modeling. We further
show the confusion matrix in Fig. 8(b), which illustrates that
our proposed method can well distinguish the activity of
“queueing” and “talking”.

V. CONCLUSIONS

In this paper, we have developed a graph interaction net-
works (GINs) for transferring relation knowledge in human
activity videos. With the proposed method, we have explored
two different tasks, including unsupervised skeleton-based
action recognition across datasets, and supervised group ac-
tivity recognition with multi-modal inputs. Both quantitative
and qualitative experimental results have demonstrated the
effectiveness of our GINs. In the future, it is an interesting
direction to employ our method for other tasks related to the
graphical model, such as social relationship understanding and
human body parsing. Moreover, it is desirable to collect new
datasets with larger scale for the task of skeleton-based action
recognition under the unsupervised domain adaptation setting.
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